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We describe a new way to attack the problem of identifying
and quantifying the number of NMR transitions in a given
NMR spectrum. The goal is to reduce the spectrum to a tabular
line list of peak positions, widths, amplitudes, and phases, and to
have this line list be of high fidelity. In this context “high fidelity”
means that each true NMR transition is represented by a single
entry, with no spurious entries and no missed peaks. A high
fidelity line list allows the measurement of chemical shifts and
coupling constants with good accuracy and precision and is the
ultimate in data compression. There are two parts to the problem.
The first is to overcome common imperfections: the non-
Lorentzian lineshapes that can arise whenever the magnetic field
inhomogeneity is less than perfect, and nonzero time delays that
cause frequency-dependent phase errors. The second is to fit the
spectral features to a model of Lorentzian lines. We use the
recently developed filter diagonalization method (FDM) to accom-
plish the reference deconvolution, the phase correction, and the
fitting, and show good progress toward the goal of obtaining a high
fidelity line list. © 1998 Academic Press
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INTRODUCTION

NMR spectroscopists spend a great deal of time analyzing
Fourier transform (FT) NMR spectra. In some cases a “clean”
spectrum with a high signal-to-noise (S/N) ratio can be used as
evidence of chemical purity; in others it may be indicative of
good spectrometer performance, as in a lineshape demonstra-
tion. Part of the strength of the FTspectrumis that it reveals a
wealth of information and, as the limitations of the FT itself are
well understood, is considered to be highly reliable. The weak-
ness of the FT spectrum is that it is simply a graph of amplitude
versus frequency: It must be analyzed somehow to pick out
peaks, measure frequencies and linewidths, integrate multi-
plets, measure couplings, etc., which can occupy considerable
operator time and may be prone to hidden errors that are less
well understood.

For many spectra, a high fidelity tabular line list, in which
each true peak was correctly identified and no spurious entries

appeared, would offer a complete summary of the information
content of the signal, excluding noise. The ultimate utility of
such a line list depends to some extent on how well the
spectrum can be modeled as a sum of discrete peaks rather
than, say, just a function of frequency. In most cases, however,
there are discrete peaks and so the utility of the line list will be
high. In this article we describe significant progress made
toward generating a high fidelity line list for liquid-state NMR
spectra automatically, efficiently, and with little or no operator
intervention. We show that by using the filter diagonalization
method (FDM) it is possible to correct for common instrumen-
tal shortcomings such as even fairly large nonzero delays after
the excitation pulse and imperfect shimming of the magnet.
Furthermore, it is possible to estimate the reliability of the
FDM line list.

THEORY

The Filter Diagonalization Method

Because FDM is new to NMR, we will briefly describe its
structure and function. The idea of FDM was introduced by
Wall and Neuhauser in 1995 as a method for spectral analysis
of time correlation functions in quantum dynamics calculations
(1). Very recently it has been improved (2, 3) and extended to
the case of model multidimensional time signals (4) and large
2D NMR data sets (5). The object of 1D FDM is to fit a given
complex time signalcn 5 C(tn) defined on an equidistant time
grid tn 5 nt, n 5 0, 1, . . . , N 2 1, to the sum of
exponentially damped sinusoids,

cn 5 O
k51

K

dke
2intvk 5 O

k51

K

dke
22pintfke2ntgk [1]

with a total of 2K unknowns: theK complex amplitudesdk,
and theK complex frequenciesvk 5 2pfk 2 igk, which
include damping. Even though the fitting problem of Eq. [1] is
highly nonlinear, its solution can be obtained by pure linear
algebra. The implicit assumption of a Lorentzian lineshape and
uniform sampling rate allows this simplification, which is1 To whom correspondence should be addressed. E-mail: ajshaka@uci.edu.
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shared by other “high resolution” methods including linear
prediction (LP) (6–14), the Prony method, MUSIC, and ES-
PRIT (15, 16). What makes FDM unique is to associate the
complex signalcn to be fitted by the form of Eq. [1] with the
time autocorrelation function of a fictitious dynamical system
described by an effective complex symmetric Hamiltonian
operatorV̂ with complex eigenvalues {vk} ( 1)

cn 5 ~F0ue2intV̂F0! [2]

so that the problem of fitting the observed time signal to the
form of Eq. [1] becomes equivalent to diagonalizing the Ham-
iltonian V̂ or, equivalently, the evolution operator (3) over a
single time step,Û 5 exp(2itV̂). In Eq. [2] a complex
symmetric inner product is used, (aub) 5 (bua) without com-
plex conjugation, andF0 is some “initial state.” The key
difference between FDM and, e.g., LP, is that in FDM we can
choose a basis just as in any other problem in quantum me-
chanics. Furthermore, the basis can be chosen to make the
procedure numerically robust and far more efficient, so that the
numerical effort scales quasi-linearly with the size of the data
set, making FDM comparable to the FFT itself in this impor-
tant regard.

Suppose that there is a set of orthonormal eigenvectors,
{ Yk}, that diagonalizesÛ 5 exp(2itV̂). Then we can write

Û 5 O
k

ukuYk)~Yku 5 O
k

exp(2itvk!uYk)~Yku [3]

and inserting Eq. [3] into Eq. [2] we can obtain Eq. [1] if we
let

dk 5 ~F0uYk!~YkuF0! 5 ~YkuF0!
2. [4]

Theeigenvaluesthus determineline positions and widths,and
theeigenvectorsdetermineline amplitudes and phases.That is,
one diagonalization ofÛ yields all of the desired parameters.
This is again in contrast to LP, in which a singular value
decomposition (SVD) or similar procedure is used to find the
LP coefficients, a polynomial rooting or equivalent procedure
is then used to determine line frequencies and widths, and then
anotherleast squares problem, using these roots as input, must
be solved to determine amplitudes and phases (14). Even when
computation of the LP coefficients is made efficient (12), the
overall algorithm is still unacceptably slow for large signals.

Even thoughÛ is not explicitly available, its matrix ele-
ments in an appropriately chosen basis are completely deter-
mined by the measured valuescn. The basis, which is not
necessarily orthonormal, can be chosen in many different
ways. Chosen naı¨vely, the number of basis functions would
determine the size of the linear system which must be solved.
For an FID of lengthN complex points, the maximum basis
size isN/ 2: Each Lorentzian line requires two complex num-

bers to specify it, so that at mostN/ 2 lines can be uniquely
fitted to a signal of lengthN.

Consider the simplest basis, the Krylov vectors generated by
the evolution operator:Fn 5 ÛnF0 5 exp(2intV̂)F0. Based
on Eq. [2] the matrix elements ofÛ in this basis are trivial to
obtain as

~FnuÛFm! 5 ~FnuFm11! 5 cm1n11, [5]

but since the basis is not orthonormal, the overlap matrix

~FnuFm! 5 ~ÛnF0uÛmF0! 5 ~F0uÛm1nF0! 5 cm1n, [6]

which is again trivially related to the measured signal, must be
assembled. It is convenient to adopt notation in whichU(0) is
the (M 1 1) 3 (M 1 1) matrix representation of the overlap
matrix, andU(1) is that ofÛ. The fitting problem of Eq. [1] is
then cast into a generalized complex symmetric eigenvalue
problem

U~1!Bk 5 ukU
~0!Bk, [7]

whence the eigenvaluesuk 5 exp(2itvk) give the line posi-
tions and widths, and the eigenvectorsBk the intensities and
phases:

dk
1/ 2 5 O

n50

M

Bnkcn, [8]

which follows from Eq. [4] by substituting

Yk 5 O
n50

M

BnkFn. [9]

Note that the eigenvectorsBk are normalized with respect to
the overlap matrixU(0), i.e.,

Bk
TU~0!B j 5 dkj. [10]

A Single Line

It is instructive to follow through the calculation based on
the simplest possible signal consisting of a single damped
sinusoid of arbitrary initial phase with no noise, for which
only two time points have been measured,t 5 0 andt 5 t,
so that

c0 5 Aeif; c1 5 Aeifexp(2iv0t), [11]

where the frequencyv0 is complex,v0 5 2pf0 2 ig, andg
. 0. There is just a single basis functionF0 so that the
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eigenvalue problem of Eq. [7] boils down to a 13 1 matrix
problem

~F0uÛF0!~F0uY0! 5 u0~F0uF0!~F0uY0!, [12]

which, using Eqs. [5] and [6], becomes

c1B0 5 u0c0B0, [13]

showing that the complex eigenvalueu0 is c1/c0 5
exp(2iv0t), from whichv0 can be obtained ift is known. The
eigenfunctionY0 is just proportional toF0 itself, and the
normalization condition,B0c0B0 5 1, for the eigenvectorB0

gives

B0 5
1

Îc0

. [14]

Now using Eq. [8] we recover the expected result:

d0 5 ~B0c0!
2 5 c0 5 Ae2if. [15]

This illustrative example does in fact reveal one interesting
aspect: The line is perfectly identified and characterized
even though only two time-domain data points have been
measured. There are many situations in which this might
prove useful, and in fact 2D spectra in which only twot1
time points were used have already been obtained (5). A
two-point FFT of course gives essentially no useful infor-
mation: Even if zero-filled, some apodization of the second
point is required! The output of FDM is the list of spectral
parameters, in this casev0 and d0, but an artificial or
“ersatz” spectrum can be computed from them, with fre-
quency points spaced as closely as one likes. This ability to
apparently get something for nothing, or at least get more
information from the measured data, is part of the attraction
of all of the “high resolution” methods such as LP. The
disadvantage of these methods is fairly obvious if one
includes the effect of noise in the two measured points. The
ersatz spectrum will still appear noiseless, but the parame-
ters themselves will be in error. A slight noise spike on the
c1 point could even result in a “negative” linewidth. Unless
there is some indication of how reliable the spectral param-
eters are, they cannot be completely trusted, and the exper-
imentalist will, quite rightly, want to compute the FFT
spectrum to get a feel for what the data “really” look like.

Many-Line Spectra and the Rectangular Window Fourier
Basis

Suppose now that a long FID of N complex points has been
acquired, which we want to fit by the form of Eq. [1]. The
complex symmetricU matrices in the Krylov basis are very

simple in structure, just consisting of successive rows shifted
by a single data point,

U~0! 5 3
c0 c1 c2 . . . cM

c1 c2 c3 . . . cM11

c2 c3 c4 . . . cM12

. . . . . . . . . . . . . . .
cM cM11 cM12 . . . cM1M

4 ;

U~1! 5 3
c1 c2 c3 . . . cM11

c2 c3 c4 . . . cM12

c3 c4 c5 . . . cM13

. . . . . . . . . . . . . . .
cM11 cM12 cM13 . . . c2M11

4 , @16#

andU(1) is simplyU(0) with an entire column right-shifted. One
can immediately recognize in these matrices the well-known
“data matrices” of LP. As such, solving Eq. [7] might be
reminiscent of some formulations of the LP-based methods.
We note, however, that the real power of FDM will be due to
the choice of a nonprimitive basis. We show the primitive basis
formulation only to relate FDM to previous linear algebraic
approaches, and because of its extreme simplicity.

Armed with Eqs. [7] and [16] the problem is certainly easy
to set up, but it is unfortunately very difficult to solve. TheU
matrices are dense and far from diagonal. Furthermore, a
routine 3 s acquisition time over a 10 ppm spectral width at 500
MHz would lead to N ; 15,000 andM ; 7500. The
numerical effort for an eigenvalue problem generally scales as
M3, so that the computation takes forever and the memory
requirements to set up the two 75003 7500 matrices are
excessive. (Some simplification is possible taking into account
the Toeplitz structure of the matrices; see Ref.12). If the true
number of linesK happens to be far fewer than 7500, then the
basis is overcomplete andU(0) becomes singular (except for
noise). The net result of these practical considerations is that
the fitting problem formulated in this way is a huge and
ill-conditioned linear system, with output that would be unre-
liable using double precision arithmetic even if computation
time were immaterial. Note that exactly the same problems
plaque parametric LP methods, where the filter length plays a
similar role toM and it is known that, particularly when there
is nonnegligible noise, the former should exceed the true
(unknown) number of lines by a substantial margin (14) and
where the matrix diagonalization is replaced by the determi-
nation of theM LP coefficients and the rooting of anMth-order
polynomial, followed by a huge linear least squares problem.

Fortunately, the primitive Krylov basis functions are not the
only choice. Any linear combination of them will serve for a
basis. In fact, the Fourier transform itself is just a recipe for
taking linear combinations of data points in time to arrive at a
data point in the frequency domain. Unlike the time points, the
frequency points have little interaction when they are well
separated, at least for linewidths narrower than the separation,
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precisely because the spectrum contains “peaks” instead of
“wiggles.” Thus, a good choice is a Fourier basis (1), of which
a particularly simple and efficient variant is the rectangular
window Fourier basis (2):

C~w! 5 O
n50

M

einwFn ; O
n50

M

ein~w2V̂t!F0, [17]

with a set ofw values taken to correspond to an evenly spaced
frequency grid. The matrix elements of the operatorÛp 5
exp(2iptV̂), p 5 0, 1, 2, . . . , between any two functions
C(w) and C(w9), defined by Eq. [17], can also be evaluated
only in terms of the measured signalcn. This can be shown
using the ansatz of Eq. [2]:

U~ p!~w9,w! ; ~C~w9!uÛpC~w!!

5 O
n950

M O
n50

M

einwein9w9~e2in9tV̂F0ue2i~n1p!tV̂F0!

5 O
n950

M O
n50

M

ein~w2w9!ei~n1n9!w9cn1n91p. [18]

Since for a finite Fourier series the basis {C(w)} is not or-
thonormal, we must again compute the overlap matrix
(C(w)uC(w9)), which corresponds top 5 0.

There is a huge difference in moving to the Fourier basis.
The structure ofU(0), U(1) is now diagonally dominant, with
off-diagonal matrix elements that decay with a roughly sinc-
like dependence along the minor diagonal, as shown schemat-
ically in Fig. 1. The diagonalization is thus far easier, and can
be carried out, for example, in a block-diagonal fashion by
simply ignoring all correlations between points in the fre-
quency domain which are far away from each other. Thus, the
eigenvalue problem is (i) diagonally dominant and (ii) of a
small size (in practiceKwin ; 3–100) over each spectral
window. In particular,Kwin remains small even thoughM, the
number of total lines used for the fit, andN, the length of the
FID, are both huge. An FID that is twice as long can be
analyzed by using twice as many windows, with matrices each
of which take roughly the same computational effort to diago-
nalize, and which yield stable and reliable eigenvalues. One of
the two summations in Eq. [18] can be evaluated analytically
(3), and therefore the numerical effort to construct the matrix
representations of theU matrices, which are obtained essen-
tially from an FFT of the FID itself, scales asN log N. Thus,
the entire numerical effort to obtain the spectral parameters
over the entire spectral width scales asN log N with a prefactor
which is somewhat larger than that of the FFT itself. This
change in scaling from cubic to quasi-linear makes FDM far

preferable to any form of conventional LP and allows the
fitting of huge signals containing myriads of lines.

Although the formulation of the fitting problem as a gener-
alized eigenvalue problem is compact and elegant, the Fourier
basis is probably the most important aspect of FDM that makes
it numerically superior to other linear algebraic methods of
solving the fitting problem of Eq. [1]. The local nature of the
Fourier basis allows solution for the frequenciesvk in a small
a priori chosen frequency interval, which operationally in-
volves only small matrices corresponding to a small (and only
locally complete) basis {C(w j)}, j 5 1, 2, . . . , Kwin. This
greatly reduces the numerical effort for both matrix evaluation
and for solution of the resulting small generalized eigenvalue
problem. Interestingly, the LP-ZOOM method, first proposed
in 1988, which is a modification of parametric LP using the
z-transform to zoom in on a particular spectral region (17),
theoretically shares many of the advantages of FDM for 1D
spectral analysis. LP-ZOOM is numerically distinct from
FDM, as it involves more adjustable parameters and the solu-
tion of more than one least squares problem, but is similar in
spirit.

A detailed theoretical treatment of the version of 1D FDM
that we employ can be found in the literature (3, 4). The
practical numerical procedure can be summarized by the fol-
lowing steps:

1. Starting at the lowest frequency available according to
the Nyquist criterion, choose a small enough frequency win-
dow [ fmin, fmax] for the spectral analysis of a given signalcn

FIG. 1. A pictorial representation of the structure of the matrix represen-
tation of the evolution operator in the rectangular window Fourier basis.
Elements along the minor diagonal decay with a roughly sinc-like dependence.
This structure allows the diagonalization to be carried out over separate small
windows, one of which is indicated by the box in the figure. Neglectingall
off-diagonal elements gives, after solving the generalized eigenvalue problem,
a spectrum reminiscent of the Fourier transform spectrum.
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5 C(tn), n 5 0, 1, 2, . . . , N 2 1. “Small enough” is
operationally defined by the resulting size of the linear alge-
braic problem, and could depend on the type of signal and/or
the computational muscle available.

2. Set up an evenly spaced (if not otherwise specified)
angular frequency grid 2ptfmin , w j , 2ptfmax, j 5 1, 2,
. . . , Kwin, by choosing an appropriate value forKwin. A
reasonable choice forKwin is Kwin 5 N( fmax 2 fmin)/ 2SW,
where SW is the spectral width 1/t. This is simply half the
number of points that would appear in a conventionalN-point
complex Fourier transform ofcn within this same frequency
window, which is consistent with the informational content of
the data arraycn, i.e., this value ofKwin is the largest number
of lines that can give a unique fit to a signal of this length.

3. Evaluate three complex symmetric matricesU( p) of the
size Kwin 3 Kwin for, e.g., p 5 0, 1, 2, using for the
off-diagonal matrix elements ofUjj 9

( p) [ U( p)(w j,w j 9)

U~ p!~w,w9!

5
e2iwfp~w9! 2 e2iw9fp~w! 1 eiMw9gp~w! 2 eiMwgp~w9!

e2iw 2 e2iw9

[19]

where the functionsfp andgp are the Fourier transforms of the
(roughly) first and last half of the signalcn with the time-
domain data points shifted byp,

fp~w! 5 O
n50

M

einwcn1p; gp~w! 5 O
n5M11

2M

ei~n2M21!wcn1p. @20#

For the diagonal matrix elements the formula

U~ p!~w,w! 5 O
n50

2M

~M 1 1 2 uM 2 nu!einw [21]

is used.

4. Solve the generalized eigenvalue problem

U~1!Bk 5 ukU
~0!Bk [22]

for the eigenvaluesuk 5 exp(2itvk) and eigenvectorsBk

using, for example, a standard implementation of the QZ-
algorithm (15).

5. Accept those eigenvaluesuk which satisfy an error crite-
rion as, e.g.,

\~U~2! 2 uk
2U~0!!Bk\ , e [23]

for a small enoughe. This is simply to make sure that none of

the eigenvalues are spurious, for such spurious eigenvalues are
very sensitive to any change in the parameters of the calcula-
tion. (Spurious eigenvalues are not those associated with noise.
They arise from the use of only a locally complete basis, and
do not occur often.)

6. Compute the complex amplitudesdk using the expression

dk
1/ 2 5 O

j51

Kwin

Bjk O
n50

M

cne
inwj [24]

or a substantially more accurate expression (4) which makes
use of the entire measured signal rather than just the firstN/ 2
points:

dk
1/ 2 5

1 2 e2tg

1 2 e2~M11!tg O
j51

Kwin

BjkU
~0!~wj,t~vk 1 ig!!. [25]

The adjusting parameterg is chosen so thatU(0)(w j,t(vk 1
ig)) is numerically stable. One correct choice isg 5
2Im{ vk} for Im{ vk} , 0 andg 5 0 for Im{ vk} . 0. In the
limit g 3 `, Eq. [25] becomes Eq. [24].

7. Store the set of convergedvk and dk and use them as
input for a spectral estimator which, for the absorption mode
“ersatz” spectrum (5) corresponds to

A~F! 5 2O
k

ImH dk

2pF 2 vk
J . [26]

If Im{ vk} . 0, thenvk is replaced withv*k. Because the form
of the spectrum is dependent on the denominator of Eq. [26],
it is sometimes economical to refer to each entry in the line list
as apole.

8. Choose the next frequency window.

A few comments are in order. First, note that in FDM the
complex amplitudes are computedwithout solving another
linear least squares problem,in contrast to all other linear
algebraic approaches. Note that the formula for the amplitude
and phase of each feature as given in Eq. [24] or [25] doesnot
depend on the values of the other complex frequencies. In
conventional LP methods, and in LP-ZOOM, the amplitudes
are constructed by solving a linear system which uses, as part
of its input, all the obtained frequencies. In a few casesvk

might have a positive imaginary part resulting in a “negative”
linewidth. These “bad” roots complicate the correct determi-
nation of the amplitudes of other features. One regularization
procedure is simply to change the sign of the imaginary part.
We adopt this procedure when constructing the ersatz spectrum
using Eq. [26], replacingvk with v*k. Note that in FDM this
replacement does not affect the other spectral features. Sec-

80 HU ET AL.



ondly, the maximum number of possible lines, namelyN/ 2 for
a signal of lengthN, is used to fit the spectrum. Many of these
ultimately turn out to be of low amplitude or wide linewidth
and correspond to noise. However, by including them we
improve the likelihood that the signal poles will be accurate.
By adjusting the number of points of the entire FID that are
used and repeating the calculation, it is possible to get a feel for
the stability of the line list. Because FDM is very fast on any
modern workstation or PC, it is possible to “play around” as
one might routinely do with the FFT, e.g., using different
weighting functions to get the best representation of the data. It
is, of course, possible to prune the line list after the fact to weed
out features of no further interest.

Other Fourier Bases

Experience with Fourier spectral analysis might suggest that
the rectangular-window Fourier basis of Eq. [7] may not be the
most efficient choice. For example, one could argue that the
abrupt rectangular window might cause truncation artifacts
analogous to those observed in an FFT of an unapodized FID.
While such oscillations never actually occur in the FDM ersatz
spectrum, they can be identified in the sinc-like structure of the
off-diagonal matrix elements ofU (see Fig. 1). It is not obvious
that such oscillations can ever affect the final results of the
generalized eigenvalue problem. In this section we address this
question.

Just as when one transforms an FID to obtain the FFT
spectrum, in the frame of FDM the truncation artifacts can be
suppressed by implementing a window or apodization function
gn which, for convenience, we write as a function of the index
n of the FID. Rewriting Eq. [17] as

Cg~w! 5 O
n50

M

gnexp~in~w 2 tV̂!!F0, [27]

we are free to experiment withgn. The original formulation of
FDM (1) used a Gaussian-window Fourier basis, which is
reminiscent of the “pseudo-echo” filter that was often applied
to early absolute-value 2D spectra (19). Such a window dis-
criminates against the initial portion of the signal, and so
results in a substantial reduction inS/N. Likewise, in FDM this
window appeared to be inferior to the rectangular-window
basis introduced later (3). This is clearly a result of the very
inefficient sampling of the data with the Gaussian window.
However, it might be the case that other more efficient win-
dows could be superior to the simplest choice of the rectangu-
lar window. To this end, Chen and Guo have derived (20) an
alternative expression to compute theU matrix elements in a
Fourier basis (1) with a general filtergn. Their expression
unfortunately requires about a factor ofKwin more CPU time
than that for the special case of the rectangular window of Eq.
[7]. It turns out, however, that a rectangular window is not the

only one which can be implemented with an eye to numerical
efficiency. There are at least two other window functionsgn

with this property. The first obvious choice is the exponential
window

gn 5 exp(2gn), [28]

corresponding to replacingw by w 1 ig in Eq. [27] and
consequently in the expressions for the matrix elements ofU in
Eq. [18]. Despite its simplicity, the exponential window is
known to be a nonoptimal apodization function, as for a
reasonably largeg, when it can have a noticeable effect, it
starts to discriminate a large part of the Fourier series (exces-
sive line broadening in the analogous case of an FID).

The simple cosine window (often referred to in the NMR
literature as a sine-bell window (21) phase shifted byp/2),

gn 5 cosSp

2

n

M 1 1D , [29]

often leads to good results as its shape yields a good balance
between efficient sampling on one hand and suppression of the
Gibbs oscillations on the other. The cosine window can be
implemented trivially, as inserting Eq. [29] into Eq. [27] leads
(after dropping the unimportant factor of 1/2) to

Ccos~w! 5 C~w 2 a! 1 C~w 1 a! [30]

with a 5 p/(2(M 1 1)), which for theU matrices gives

Ûcos
~ p!~w,w9! 5 Û~ p!~w 1 a, w9 1 a!

1 Û~ p!~w 1 a, w9 2 a!

1 Û~ p!~w 2 a, w9 1 a!

1 Û~ p!~w 2 a, w9 2 a!. [31]

That is, the use of a cosine window corresponds to essentially
the same numerical procedure and therefore is easily incorpo-
rated in the FDM code as an option. Similarly, virtually any
trigonometric functiongn can be implemented efficiently.

To our disappointment, introducing the cosine window has
not led to a significant numerical difference, except for a few
cases where it perhaps showed a slightly better performance
than the rectangular window. A simple explanation of why the
use of the cosine window does not lead to significant improve-
ment of FDM is the following: (i) FDM with a rectangular
window is already very efficient and often shows nearly opti-
mal performance (3–5); (ii) the use of another windowgn in
Eq. [27] only affects the initial structure of theU matrices,
having only a minor effect on the whole subspace formed by
the Kwin window basis functions: Eq. [31] simply means that

811D FILTER DIAGONALIZATION METHOD



{ Ccos(w)} is a certain linear combination of {C(w)}. Linear
combinations of the {C(w)} are taken in any event to diago-
nalize theU matrices, so that taking such combinations up
front plays little additional role. We believe that this finding
should also hold for all other reasonable types of windowgn.

Reference Deconvolution

The elegant idea of reference deconvolution as put forward
by Morris (22) is simply to use a reference line, which could be
TMS, as a lineshape or convolution reference as well as just a
chemical shift reference. The known theoretical lineshape of
TMS can be compared with the observed lineshape to assess
the shimming and/or stability of theB0 field. The observed
response as a function of frequencyO(F) can be represented
by a convolution of the perfect responseP(F) with the instru-
mental responseQ(F),

O~F! 5 P~F!* Q~F!, [32]

which according to the convolution theorem means that the
corresponding perfect FIDp(t) has been multiplied by the
instrumental functionq(t), whereq(t) andQ(F) form a Fou-
rier transform pair. Clearly,p(t) 5 o(t)/q(t), so that the
observed data can be corrected if the instrumental functionq(t)
can be obtained. Knowing the ideal lineshape for an isolated
reference line, like TMS, allowsq(t) to be obtained as the ratio
of the inverse FT of a small spectral region centered on the
observed lineshape (and not containing other signals) to the
inverse FT of the ideal lineshape:

q~t! 5
oTMS~t!

pTMS~t!
. [33]

Then simply dividing the full FID byq(t) accomplishes the
desired deconvolution. If the shimming is poor, thenoTMS(t)
will decrease more rapidly thanpTMS(t), so that q(t) will
eventually be small. Dividing byq(t) thus blows up the noise
in the tail of the FID just like a conventional resolution en-
hancement function. When Fourier spectral analysis is used,
this may require some apodization, so that there is a limit to
reference deconvolution which will depend on theS/N ratio.
To the extent that there is nonnegligible noise in the baseline
around the reference peak, there may also be some unwanted
small features introduced by reference deconvolution with the
noise. Other minor problems such as baseline discontinuity at
the edges of the selected section have been successfully ad-
dressed (23).

Reference deconvolution is a powerful addition to FDM.
The first weakness an experimentalist notices with Eq. [1] is
the assumption of a Lorentzian lineshape. This is important to
the algorithm because without it, the fitting becomes an essen-
tially impossible large nonlinear optimization problem rather
than a linear algebra problem. However, imperfect shimming,

chemical exchange, and other dynamic processes can all lead
to a distinctly non-Lorentzian lineshape. FDM will fit such a
single line as a superposition of Lorentzians, but it would be
preferable to have asingle entry in the line list rather than a
large number of closely clustered lines. This is especially
important if one wishes to measure small splittings that may be
almost unresolved but correspond to aJ coupling that is of
interest. For many situations it is possible to offer a surpris-
ingly simple solution: reference deconvolution using the pre-
scription laid out by Morris, but implemented using FDM
itself.

The protocol is deceptively simple. FDM is used to fit the
observed reference lineshape to a sum of Lorentzians by se-
lecting a window centered on the reference line that is narrow
enough to exclude the carbon-13 satellites. It is essential to
have a long enough signal so that truncation effects are mini-
mal, and so that the number of local basis functions is dense
enough to result in a good match to the observed lineshape.
The set {dk, vk} for TMS then gives a very close analytic
approximation to the functionoTMS(t). The functionpTMS(t)
can be formulated as three closely spaced Lorentzians (to
account for the Si-29 satellites), and the ratio of the two
functions givesq(t). Note that there is no baseline noise
included inq(t) except, perhaps, as slight errors in the set {dk,
vk}. The FID is then preprocessed usingq(t).

The efficacy of the reference deconvolution can then be
checked by processing the same TMS spectral window of the
new FID. Ideally, only the three poles for the TMS lines should
turn up, along with very small amplitude poles representing the
baseline noise. If significant additional lines are needed, then
further small corrections can be iteratively applied, in a pro-
cedure which converges providing theS/N is adequate and
there are no other genuine signals within the window. When
adequate results are obtained, the rest of the spectrum can be
processed with confidence. Only lines from spins undergoing
chemical exchange and the like should then require more than
a single entry in the line list to achieve a good fit. It is possible
to extend the idea further by using a model for a chemical
exchange lineshape and then deconvolute this as well. Since
FDM works over disjoint spectral windows, it is possible in
principle to process the NH and aliphatic regions of the proton
spectrum using different functions for the reference deconvo-
lution. Note that reference deconvolution can be applied to any
spectroscopy in which the observed lineshape can be repre-
sented as a convolution, extending the reach of FDM into many
related areas in which the lineshape may be non-Lorentzian. It
is even possible to convolute the Lorentzians found by FDM
with the experimental lineshape to restore the original shape,
should this be desired.

Phase Correction

Problems with the first few data points of the FID can arise
from the transient response of the audio filters (digital or
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analog) or probe ring-down and lead to baseline roll. Some
pulse sequences, such as the 1–3–3–1 water suppression se-
quence (24), can introduce large linear phase rolls over the
spectrum, and when a pulsed field gradient is applied imme-
diately prior to acquisition, some stabilization delays usually
need to be included. The usual linear phase correction routines
applied to the FFT spectrum only work adequately when the
corresponding delay is not too long, so that the phase roll over
a typical linewidth is small.

FDM has good tolerance for this type of data imperfection.
The usual LP approach is to discard the first few data points
and then “backward predict” them from uncorrupted data to
flatten the baseline (25). This approach will only work well
when the LP backward extrapolation is reasonably good, i.e.,
when both the number of extrapolated points and the number of
lines are not too large.

If the data is available only forn 5 ñ, ñ 1 1, . . . ,N, then
the frequenciesvk extracted from such a signal by FDM
should be the same, while the amplitudesdk(ñ) will be mod-
ulated by the frequency-dependent factors

dk~ñ! 5 dkexp(2iñtvk). [34]

To correct an extracted amplitudedk(ñ), one can thus simply
multiply it by the factor exp(iñtvk). Such a correction will be
accurate if the extracted frequenciesvk and amplitudesdk(ñ)
are reliable, which under certain conditions is often the case.
Spectral estimator-based methods that attempt to correct the
distorted baseline of the FFT spectrum by, e.g., fitting it to a
smooth function are clearly inferior to FDM, as they require
the solution of a nonlinear optimization problem, while the use
of Eq. [34] is straightforward.

However, one should realize that the correction factor
exp(iñtvk), which is now a positive exponential, can be very
large if the width of thekth pole is large. For a large time delay
ñt even a very small error in determination of the amplitude
dk(ñ) could be amplified enormously if the widthgk is large.
The errors of the calculated spectral parameters,vk anddk(ñ),
are not the only source of instability, because the line list
obtained by FDM does not only represent the desired signals.
In fact, it always contains poles which represent the noise. For
example, white uncorrelated noise results in poles with very
large gk. However, such poles can be easily identified and
removed from further analysis. Therefore, their presence will
not affect the phase correction procedure. The problem will
occur when such an obvious separation of the signal and noise
poles is not possible. To this end Eq. [34] has certain limita-
tions. That is, FDM will be a perfect method for correcting
artifacts due to possibly very large time delays, but only for
spectra with lines that are not too strongly overlapping and not
buried in too much noise. We have found, however, that FDM
is surprisingly robust on even complex spectra with consider-
able time delays as long as the spectrum is not too noisy.

As mentioned earlier, the amplitudes and complex poles of
the broad spectral features are most sensitive to the parameters
of the fit by FDM. This leads to instabilities when such poles
are used as entries for the corrections of large time delays. In
our numerical tests we found that the applicability of FDM for
the phase correction can significantly be extended to longer
time delays when the stabilization idea, originally proposed in
a quite different context (26), is used in the frame of FDM. The
idea is very simple and relies on the fact that the errors in
determination of the spectral parameters have a random char-
acter and therefore can be reduced by averaging the FDM
ersatz spectrum over the acquisition time or number of points,
N. In particular, the phase of the unwanted features is sensitive
to the exact length of the signal used in the calculation,
whereas the signal poles are more stable. Since FDM is not
time consuming, one can carry out such an averaging using
many FDM calculations over long but slightly different length
data recordsN1, N2, etc., extracted from the same FID. Al-
though the averaging procedure does not seem to be very
elegant, it turns out to work well when a single FDM result is
unacceptable. As it is quite general, it can also be used in other
contexts to stabilize the ersatz spectra computed by FDM.

Even when rather large delays are not at issue, FDM may
still be quite useful. Note that the usual “automatic” zeroth-
and first-order phase correction due to small delays and finite
90° pulse times can be applied extremely rapidly to the list of
complex amplitudesdk using any simple smooth function of
frequency. There are other advantages: As long as the expected
phase shift as a function of frequency can be modeled, for
example, that which might be produced by a composite 180°
pulse in a spin echo, then this nonlinear correction can be
applied to thedk as well, even though it may not be a simple
function of frequency.

Matched Resolution Enhancement or “Cheating”

FDM can achieve an extremely good fit to most kinds of
spectra that arise from NMR experiments in liquids. There is a
difference, however, between having a good fit and having the
true spectral parameters. Obviously, if there are thousands of
overlapping Lorentzians within a small spectral window, then
the lengthN of the FID may not be long enough to achieve an
exact fit, as the number of poles in the window is limited to
Kwin. In this case the spectrum is intrinsically unresolved. The
presence of noise poles is another issue. Nevertheless, in some
cases the FDM line list is close to a perfect physical summary
of the NMR transitions. By manipulating the spectral param-
eters directly, it is possible to present the spectral information
in more informative ways.

For example, digital filtering for resolution enhancement is
commonly applied in FT spectroscopy. One method is to
multiply the FID by a positive exponential which matches
some linewidth, and then apodize the end of the data to keep
the amplification of the noise from being too severe (27). When
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there are lines of differing width, some narrow features can be
“overenhanced,” giving undulations in the baseline around
these signals. This is because the digital filter corresponds to
subtractinga fixed width from each line. However, in FDM we
can take a different approach and reduce the linewidth of each
pole by a certain fraction of its original width. We call this
procedure “cheating,” because it can be quite dangerous, and
because it will appeal to everyone.

Although cheating is certainly pushing the integrity of the
line list to its limit, it can reveal buried couplings that were
invisible in the FDM ersatz spectrum, or in the FT spectrum.
Reference deconvolution, which tends to minimize the number
of entries for each line, is certainly a good idea to use before
cheating. Used cautiously, cheating can help reveal more of the
information in the signal, as we show in the next section.

EXPERIMENTAL

A Numerical Example

To show the ability of FDM to identify and resolve purely
Lorentzian lines of widely differing widths and spacings in
a very long FID, we constructed a “Jacob’s ladder” of 50
triplets, each of which has a splitting between the nearest
neighbors of 2.5 times the full width at half height. The
signal is constructed by assuming a spectral width of 5 kHz
and beginning with a triplet with the right-hand line at
Nyquist frequency of 2500 Hz and with a linewidth of 5.0
Hz and spacing of 12.5 Hz. This 1:2:1 triplet is then repro-
duced by multiplying both the frequency and linewidth by
0.9 a total of 49 times, keeping the amplitude and phase
fixed, with an overall phase of zero. The damped sinusoids
for these 50 triplets are coadded, normalized to an initial
valuec0 5 16,384,sampled uniformly in time every 200ms,
and then integerized to mimic, approximately, an ADC by

taking the closest integer valuelessthan the true value. The
test FID cn before integerization is thus

cn 5 81.92* O
m50

49

exp~2pi ~0.9!m

3 ~2500.02 2.5i !~2.03 1024n!)

1 2exp~2pi ~0.9!m~2487.52 2.5i !~2.03 1024n!!

1 exp~2pi ~0.9!m~2475.02 2.5i !~2.03 1024n!!

[35]

and is heavily peaked att 5 0, diminishing rapidly as the lines
get out of phase and the broader features decay, so that the
narrow lines are digitized with only 6–8 bits. Integerization
introduces colored noise into the baseline and is an important
element of the test. The difference in line width between the
broadest and narrowest feature is almost 175-fold, as is the
difference in peak height. The integral of each multiplet should
be the same, however. Figure 2 shows the spectrum of the test
signal.

Figure 3 compares the FFT to FDM on the densest portion
of the frequency range of the test signal, using 32K and 64K
FIDs. The result of using the FFT, with appropriate apodization

FIG. 2. The spectrum of triplets, “Jacob’s ladder.” A total of 50 triplets are
present, beginning with a 5.0 Hz linewidth with 12.5 Hz coupling centered at
2487.5 Hz and finishing with a 28.8 mHz line width and 71.6 mHz couplings.
A spectral width of 5 kHz is used, of which half is shown. The wide range of
linewidths and splittings and the accumulation of lines near zero frequency
makes this signal challenging for linear algebraic methods.

FIG. 3. A comparison of FFT and FDM on the densest part of the signal
shown in Fig. 2. The relative integrals calculated by FDM are shown for the
32K FID. Note that a 32K point acquisition (6.553 s) is unable to resolve any
of the fine multiplet structure if an FFT is used, even with zero-filling to 128K,
because of the approximate resolution limit of 0.15 Hz according to the
uncertainty principle. By contrast, FDM resolves all the multiplets with a 32K
FID. The line frequencies extracted by FDM are highly accurate, and the
relative integrals are within a few percent of the correct value for each
multiplet. Some of the individual line intensity/width ratios are not as accurate,
however, because the shorter FID does not have quite enough information
content to pin down these parameters.
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to minimize, but not completely eliminate, the “sinc wiggles”
that are found on the narrowest lines, and with zero-filling to
128K, shows that a 32K FID is unable to resolve any of the
narrowest features, but that doubling the length of the FID to
64K resolves more of the multiplets. FDM does substantially
better, although the peak heights of some of the narrow fea-
tures are not correctly captured. The relativeintegrals of the
multiplets, shown in the figure, are quite good, as are the
frequency coordinates of the individual lines, but there is some
error in the exact determination of the width/height individu-
ally. These errors arise from the incomplete information in the
shorter FID, and disappear as the length of the signal is
increased. The broader lines are correctly reproduced by both
methods. The longest signal is processed, in its entirety, in a
matter of tens of seconds with FDM on a low-end workstation.

Reference Deconvolution by FDM

Figure 4 shows a close-up of the TMS line in a solution of
;10 mg of the compound shown in Fig. 5 dissolved in CDCl3,
acquired on a 500 MHz Varian UnityPlus spectrometer with
different instrumental linewidths by adjusting the shimming. In
the second trace the line has been deliberately made asymmet-
ric, broad, and very non-Lorentzian using thez2 andz4 shims.
Rather than use a theoretical model for the TMS line, we
simply used the FDM fit of the shimmed spectrum as an ex-
perimental standard. Thus, deconvoluting the poorly shimmed
spectrum should yield results comparable to the properly
shimmed spectrum, which is easily checked. The first two traces
in Fig. 6 show a representative multiplet with the good and poor
shimming, respectively. The effect of reference deconvolution on
the second spectrum is shown in the third trace, giving results
nearly indistinguishable from the correctly shimmed spectrum at
top. Finally, the last trace shows the effect of matched resolution

enhancement (cheating) by artificially multiplying the linewidth
of all poles by a factor of 0.5. Some of the noise poles become
more prominent as notches in the baseline, but in other respects
the results are quite encouraging.

There is, of course, a limit to reference deconvolution by
FDM. When signals that were broadened about twice as much
as those shown were processed, the deconvolution function
itself becomes unstable. The net result is that only the initial
portion of the FID can be processed, and the number of poles
in the frequency domain is not dense enough to achieve a good
fit, or to uncover small splittings. Fortunately, it is fairly easy
to tell visually whether the results are any good.

FIG. 4. A TMS reference line shimmed so that the Si-29 satellites are
visible (top) and shimmed very poorly (bottom). FDM was used to fit both
signals to a sum of Lorentzian lines and thereby construct the reference
deconvolution function discussed in the text.

FIG. 5. The structure of a diindole reaction product, 12H-pyrido[1,2-a:
3,4-b]diinole, used to test the reference deconvolution procedure. It was
dissolved in CDCl3 with added TMS.

FIG. 6. An expanded view of a small portion of the 1D NMR spectrum of
the molecule shown in Fig. 5. The first two traces correspond to same
homogeneity as the two traces in Fig. 4. The third trace shows the result of
reference deconvolution of the second trace with the deconvolution function
obtained by analyzing the TMS signals in Fig. 4 by FDM. It agrees extremely
well with the first trace, as it should. The last trace shows the effect of
“cheating” and artificially making the linewidth of each feature in the decon-
voluted spectrum only half as wide. Some small couplings are revealed. The
FID had 32,768 complex points; the entire calculation including the reference
deconvolution took about 15 s on a small SGI workstation (200 MHZ IP22
processor. FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0. CPU:
MIPS R4400 Processor Chip Revision: 6.0, 64 Mb RAM.)
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Phase Correction by FDM

Figure 7 shows a portion of the 1D spectrum of progesterone
obtained over a 4 kHz spectral width usingN 5 8192complex
points. With a time delay of 25 ms, the first 100 data points are
missing from the FID. This is quite a challenging phase cor-
rection problem because the spectrum is not simple, the FID
has thousands of points, and a lot of data is missing. Never-
theless, the averaged ersatz FDM spectrum summing 25 dif-
ferent calculations with between 7K and 8K points shows very
good agreement with the uncorrupted spectrum. By compari-
son, zeroing the first 100 points and then Fourier transforming
the FID gives terrible baseline problems which also cannot be
reliably distinguished from true signal. Even with 200 points
missing, FDM can still extract a usable averaged ersatz spec-
trum (data not shown). Clearly, for milder situations in which
a gradient stabilization delay needs to be included and a few
milliseconds of data are missing, FDM will be very reliable.

SUMMARY

The filter diagonalization method is a powerful new ad-
dition to the linear algebraic arsenal for parameter and

spectral estimation of NMR signals. FDM is numerically
stable, lightning fast, and applicable to many different kinds
of spectra. Some of the common instrumental shortcomings,
such as poor shimming or nonzero dead times, can be
conveniently overcome using FDM. In particular, reference
deconvolution by FDM is a very useful technique. Like most
parameter estimation methods, FDM is sensitive to noise
and certainly cannot improve the intrinsic sensitivity of the
NMR experiment by somehow digging signals out of noise.
To the extent the signal matches the FDM ansatz, however,
big improvements can be obtained, with the best case being
sharp, well-resolved, purely Lorentzian lines. If the signal is
nonstationary (e.g.,t1-noise along an indirect dimension of
a multidimensional NMR experiment) or very noisy, or if
the lines are very far from Lorentzian, a spectrum can be
obtained, but the spectral parameters do not have the desired
significance. However, because FDM can be implemented
so efficiently, it could be used to control the experiment
on-line, terminating acquisition under computer control
once a stable line list is obtained. Time averaging is, of
course, the only reliable method for improvingS/N on a
given instrument and sample. This is clearly an avenue
worth exploring in the future. We note in passing that almost
any computer is suitable for FDM. However, because the
algorithm parallelizes trivially, parallel computers may be
used for direct parameter estimation on huge multidimen-
sional signals in less time than it takes to acquire the data.
We will describe these exciting developments in a series of
related publications.
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