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We describe a new way to attack the problem of identifying
and quantifying the number of NMR transitions in a given
NMR spectrum. The goal is to reduce the spectrum to a tabular
line list of peak positions, widths, amplitudes, and phases, and to
have this line list be of high fidelity. In this context “high fidelity”
means that each true NMR transition is represented by a single
entry, with no spurious entries and no missed peaks. A high
fidelity line list allows the measurement of chemical shifts and
coupling constants with good accuracy and precision and is the
ultimate in data compression. There are two parts to the problem.
The first is to overcome common imperfections: the non-
Lorentzian lineshapes that can arise whenever the magnetic field
inhomogeneity is less than perfect, and nonzero time delays that
cause frequency-dependent phase errors. The second is to fit the
spectral features to a model of Lorentzian lines. We use the
recently developed filter diagonalization method (FDM) to accom-
plish the reference deconvolution, the phase correction, and the
fitting, and show good progress toward the goal of obtaining a high
fidelity line list. © 1998 Academic Press
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INTRODUCTION

NMR spectroscopists spend a great deal of time analyziﬂ
Fourier transform (FT) NMR spectra. In some cases a “clea
spectrum with a high signal-to-nois&{) ratio can be used as
evidence of chemical purity; in others it may be indicative
good spectrometer performance, as in a lineshape demonst
tion. Part of the strength of the Fpectrunis that it reveals a 9"

appeared, would offer a complete summary of the informatio
content of the signal, excluding noise. The ultimate utility of
such a line list depends to some extent on how well th
spectrum can be modeled as a sum of discrete peaks ratl
than, say, just a function of frequency. In most cases, howeve
there are discrete peaks and so the utility of the line list will b
high. In this article we describe significant progress mad
toward generating a high fidelity line list for liquid-state NMR
spectra automatically, efficiently, and with little or no operatol
intervention. We show that by using the filter diagonalizatior
method (FDM) it is possible to correct for common instrumen
tal shortcomings such as even fairly large nonzero delays aft
the excitation pulse and imperfect shimming of the magne
Furthermore, it is possible to estimate the reliability of the
FDM line list.

THEORY

The Filter Diagonalization Method

Because FDM is new to NMR, we will briefly describe its
structure and function. The idea of FDM was introduced b
Wall and Neuhauser in 1995 as a method for spectral analy:
time correlation functions in quantum dynamics calculation:
. Very recently it has been improved, 3 and extended to
the case of model multidimensional time signals gnd large

AP NMR data setsH). The object of 1D FDM is to fit a given

anplex time signat,, = C(t,) defined on an equidistant time
dt, =nr,n=20,1, ...,N — 1, to the sum of

wealth of information and, as the limitations of the FT itself arg*Ponentially damped sinusoids,
well understood, is considered to be highly reliable. The weak-

ness of the FT spectrum is that it is simply a graph of amplitude
versus frequency: It must be analyzed somehow to pick out
peaks, measure frequencies and linewidths, integrate multi-

K K
Cn — Z dke*inrwk — Z dke*Zﬂ'ianke*nT'yk [1]
k=1 k=1

plets, measure couplings, etc., which can occupy considerable
operator time and may be prone to hidden errors that are lgggh a total of K unknowns: theK complex amplitudesl,,

well understood.

and theK complex frequenciess, = 2=f, — ivy,, which

For many spectra, a high fidelity tabular line list, in whiclinclude damping. Even though the fitting problem of Eq. [1] is
each true peak was correctly identified and no spurious entrigighly nonlinear, its solution can be obtained by pure linea

algebra. The implicit assumption of a Lorentzian lineshape ar

1 To whom correspondence should be addressed. E-mail: ajshaka@uci.ethiform sampling rate allows this simplification, which is
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1D FILTER DIAGONALIZATION METHOD 77

shared by other “high resolution” methods including linedsers to specify it, so that at mobl/ 2 lines can be uniquely
prediction (LP) 6-14, the Prony method, MUSIC, and ESfitted to a signal of lengtiN.

PRIT (15, 1. What makes FDM unique is to associate the Consider the simplest basis, the Krylov vectors generated |
complex signak,, to be fitted by the form of Eq. [1] with the the evolution operato®,, = U"d)o = exp(—inrf))(bo. Based
time autocorrelation function of a fictitious dynamical systeran Eq. [2] the matrix elements &f in this basis are trivial to
described by an effective complex symmetric Hamiltoniaobtain as

operator{) with complex eigenvaluesd,} (1)

A ((I)n|U(Dm) = ((Dn|cbm+l) = Cm+n+1! [5]

Cn = (Dole™™Dy) (2]
but since the basis is not orthonormal, the overlap matrix
so that the problem of fitting the observed time signal to the
form of Eqg. [1] becomes equivalent to diagonalizing the Ham-
iltonian ) or, equivalently, the evolution operatds)(over a
single time stepU = exp(=itQ). In Eq. [2] a complex

symmetric inner product is useda|b)“_=_ _(b|a) W'th,OUt COM-  ssembled. It is convenient to adopt notation in wHit® is

plex conjugation, andb, is some “initial state.” The key . .

difference between FDM and, e.g., LP, is that in FDM we catrrlle M+ 1) X (M + 1) matrix representation of the overlap

choose a basis just as in an, (.)tr.{er p'roblem in quantum mmgtrix, andU™ is that ofU. The fitting problem of Eq. [1] is

chanics Furtherjmore the bgsis can be chosen to makethen cast into a generalized complex symmetric eigenvall

' X ' e Hrgblem

procedure numerically robust and far more efficient, so that the

numerical effort scales quasi-linearly with the size of the data

set, making FDM comparable to the FFT itself in this impor-

tant regard. ] ) ] . ]
Suppose that there is a set of orthonormal eigenvectofd)ence the eigenvalueg = exp(—itwy) give the line posi-

{Y,J, that diagonalized) = exp(i=Q). Then we can write tions and widths, and the eigenvectd@g the intensities and

phases:

(@] @) = (0"DgUTDg) = (D U™ D) = Cri,  [6]

which is again trivially related to the measured signal, must b

U(l)Bk = UkU(o)Bk, [7]

M

U =2 wYI(Yd = 2 exp(=itag|Y)(Y{ (3]
K k

di>= 2 Bucn (8]
and inserting Eq. [3] into Eqg. [2] we can obtain Eq. [1] if we "o
let
© which follows from Eq. [4] by substituting
de = ((DO|Yk)(Yk|(D0) = (Yk|q)0)2- (4] N
The eigenvalueshus determindine positions and widthgnd Yi= 2 Budn [l

theeigenvectorsletermindine amplitudes and phaseBhat is, "o

one diagonalization of) yields all of the desired parameters

This is again in contrast to LP, in which a singular valu

decomposition (SVD) or similar procedure is used to find tht

LP coefficients, a polynomial rooting or equivalent procedure o

is then used to determine line frequencies and widths, and then B UTB; = by (10]

anotherleast squares problem, using these roots as input, mJelSSingIe Line

be solved to determine amplitudes and phatds Even when

computation of the LP coefficients is made efficieh)( the It is instructive to follow through the calculation based on

overall algorithm is still unacceptably slow for large signalsthe simplest possible signal consisting of a single dampe
Even thoughU is not explicitly available, its matrix ele- sinusoid of arbitrary initial phase with no noise, for which

ments in an appropriately chosen basis are completely def@ply two time points have been measured; 0 andt = ,

mined by the measured values. The basis, which is not SO that

necessarily orthonormal, can be chosen in many different

ways. Chosen riaely, the number of basis functions would co = A€?; ¢, = Ae’exp(—iwr), [11]

determine the size of the linear system which must be solved.

For an FID of lengthN complex points, the maximum basiswhere the frequency, is complex,w, = 2nfy, — iy, andy

size isN/2: Each Lorentzian line requires two complex num> 0. There is just a single basis functich, so that the

ote that the eigenvectoB, are normalized with respect to
e overlap matribdU©, i.e.,
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eigenvalue problem of Eq. [7] boils down to aXl 1 matrix simple in structure, just consisting of successive rows shifte

problem by a single data point,
(Do UDg) (D] Yo) = ug(Po| Do) (| Yo), [12] C G Cc ... Cum
c; G C; ... Cuu1
which, using Egs. [5] and [6], becomes U%=| ¢ € ¢ ... Cuiz [;
C.By = UCoBo, [13] L Cv  Cm+1 Cwm+2 -+ Cuum
C C, C;3 ... Cupu1
showing that the complex eigenvalug, is c;/c, = C, Cs Cs ... Cyis
exp(—iwgt), from whichwy can be obtained if is known. The uo = Cs C, Cs ... Cwss |, [16]
eigenfunctionY, is just proportional to®, itself, and the L
normalization conditionB,coB, = 1, for the eigenvectoB, | Cwii Cwmiz Cmsiz --- Conis
gives
andU® is simplyU© with an entire column right-shifted. One
B, = i [14] can immediately recognize in these matrices the well-know
0 \EO “data matrices” of LP. As such, solving Eq. [7] might be
reminiscent of some formulations of the LP-based method
Now using Eq. [8] we recover the expected result: We note, however, that the real power of FDM will be due tc
the choice of a nonprimitive basis. We show the primitive basi
_ formulation only to relate FDM to previous linear algebraic
do = (BoCo)2 = co = Ae %, [15]

approaches, and because of its extreme simplicity.

Armed with Egs. [7] and [16] the problem is certainly easy

This illustrative example does in fact reveal one interestiqg set up, but it is unfortunately very difficult to solve. The
aspect: The line is per'fectly ideptified and. CharaCteriZ‘?‘Hatrices are dense and far from diagonal. Furthermore,
even though only two tlme-do.malr'l datg p0|r}ts haye b_e?gutimi%sacquisition time over a 10 ppm spectral width at 50
measured. There are many situations in which this migft,> \ould lead toN ~ 15.000 andM ~ 7500. The

prove u;eful, and in fac; 2D s;ljectra in which oply MO 1yymerical effort for an eigenvalue problem generally scales
time points were used have already been obtairgd A M3, so that the computation takes forever and the memol

two-point FFT of course gives essentially no useful 'nforr'equirements to set up the two 7500 7500 matrices are

malltio'n: Even if zero-filled, some apod'ization. of the SecorEl(cessive. (Some simplification is possible taking into accoul
point Is reqwred! The output of FDM is the list Of §pectra{he Toeplitz structure of the matrices; see R&). If the true

Parameiters, in this case, and d, bl]ft an ﬁrt'f'c'a! horf number of lineK happens to be far fewer than 7500, then the
ersatz” spectrum can be Icomlputed roli'l t en;],' wit " "Yasis is overcomplete arld® becomes singular (except for
quency points spaced as Closely as One likes. This abi 'tyrliBise). The net result of these practical considerations is th
.apparen.tly get something for ”Oth'”g’ or at least get MOffe fitting problem formulated in this way is a huge anc
information from the measured data, is part of the attractin ., qitioned linear system, with output that would be unre-

of all of the *high resolution metlhods. such as LP; Th‘ﬁable using double precision arithmetic even if computatiot
Fhsadvantage of these.me.thods Is fairly obwous', if OMNfme were immaterial. Note that exactly the same problem
includes the effect of noise in the two measured points. T

i still icel h faque parametric LP methods, where the filter length plays
ersatz spectrum will still appear noiseless, but the paramggsijar role toM and it is known that, particularly when there

ters themselves will be in error. A slight noise spike on the nonnegligible noise, the former should exceed the tru
¢, point could even result in a “negative” linewidth. Unles unknown) number of lines by a substantial margld)(and
there is some indication of how reliable the spectral parafii ora the matrix diagonalization is replaced by the determ
eters are, they cannot be completely trusted, and the eXpgksiqn of the LP coefficients and the rooting of Afth-order
imentalist will, quite rightly, want to C()“rnpute" the F,FTpolynomiaI, followed by a huge linear least squares problerr
spectrum to get a feel for what the data “really” look like. Fortunately, the primitive Krylov basis functions are not the
only choice. Any linear combination of them will serve for a
basis. In fact, the Fourier transform itself is just a recipe fo
taking linear combinations of data points in time to arrive at
Suppose now that a long FID of N complex points has beelata point in the frequency domain. Unlike the time points, th
acquired, which we want to fit by the form of Eq. [1]. Therequency points have little interaction when they are wel
complex symmetridJ matrices in the Krylov basis are veryseparated, at least for linewidths narrower than the separatic

Many-Line Spectra and the Rectangular Window Fourier
Basis
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precisely because the spectrum contains “peaks” instead of
“wiggles.” Thus, a good choice is a Fourier badiy ©f which

a particularly simple and efficient variant is the rectangular
window Fourier basis2):

M M
W(p) = >, ™D, = > e M, [17]

n=0 n=0

with a set ofe values taken to correspond to an evenly spacedl'"gh
frequency grid. The matrix elements of the operattt =
exp(-iptQ), p = 0, 1, 2, ..., between any two functions
P(p) and ¥(¢"), defined by Eqg. [17], can also be evaluated
only in terms of the measured signg|. This can be shown

using the ansatz of Eq. [2]: Low
Rel. Intensity %
UP(e’ @) = (‘P(‘P’)|qu’(‘/’)) FIG. 1. A pictorial representation of the structure of the matrix represen

tation of the evolution operator in the rectangular window Fourier basis
o . , R Elements along the minor diagonal decay with a roughly sinc-like dependenc
gnegn'?' (e NP |e PP ) This structure allows the diagonalization to be carried out over separate sm
windows, one of which is indicated by the box in the figure. Neglectitig
off-diagonal elements gives, after solving the generalized eigenvalue proble
a spectrum reminiscent of the Fourier transform spectrum.

M=z

=2

n'=0

>
l
o

Il
M=z
M=z

ein(wf w’)ei(n+n’>w’cn+n,+p_ [18]

=
I
o
]
I
(=}

preferable to any form of conventional LP and allows the

Since for a finite Fourier series the basi¥({p)} is not or- fitting of huge signals cqntamlng ”Ty.”ads of lines.
. . Although the formulation of the fitting problem as a gener-
thonormal, we must again compute the overlap matri

(W(e)W(¢'), which corresponds tp = 0 Rized eigenvalue problem is compact and elegant, the Fouri

There is a huge difference in moving to the Fourier basigf’jISIS 'S probably the_most |mportqnt aspect of F_DM that maks
it numerically superior to other linear algebraic methods o

The structure oU©, U®W is now diagonally dominant, with : .
off-diagonal matrix elements that decay with a roughly Sins_olvmg the fitting problem of Eq. [1]. The local nature of the

X . . urier basis allows solution for the frequencigsin a small

like dependence along the minor diagonal, as shown schemat- . —. . . : .

. o : o . a priori chosen frequency interval, which operationally in-

ically in Fig. 1. The diagonalization is thus far easier, and can . .
volves only small matrices corresponding to a small (and onl

be carried out, for example, in a block-diagonal fashion qgcally complete) basis (¢ )}, | = 1, 2 K This
j y - y y ey win®

simply ignoring all correlations between points in the fre- . v .
uency domain which are far away from each other. Thus tHreeatly reduces the numerical effort for both matrix evaluatiol
gigenvalue problem is (i) diagonally dominant anoi (i) 01" gmd for solution of the resulting small generalized eigenvalu
small size (in practicéK,. ~ 3-100) over each spectral problem. Interestingly, the LP-ZOOM method, first proposet
win 1

window. In particularK.,.. remains small even though, the in 1988, which is a modification of parametric LP using the

number of total lines used for the fit, aiN] the length of the fﬁgi?j;ggﬂ] t(s)hz(:g?n:r;non 0? t%irt;:(;j\llzrn;pee?i][ Ir:egll\??f)o(r 10
FID, are both huge. An FID that is twice as long can be y y g

. . . : . spectral analysis. LP-ZOOM is numerically distinct from
analyzed by using twice as many windows, with matrices ea o ,
. . . M, as it involves more adjustable parameters and the sol
of which take roughly the same computational effort to diagQ- LT
. . ) . . ign of more than one least squares problem, but is similar i
nalize, and which yield stable and reliable eigenvalues. One @

. : . spirit.
the two summations in Eq. [.18] can be evaluated analytlcal_?yA detailed theoretical treatment of the version of 1D FDM
(3), and therefore the numerical effort to construct the matr{

representations of the matrices, which are obtained essen-ﬁat we employ can be found in the literatur8, §). The

tially from an FET of the FID itself, scales & log N. Thus practical numerical procedure can be summarized by the fc

the entire numerical effort to obtain the spectral parametekr)éN Ing steps:

over the entire spectral width scaleshakbg N with a prefactor 1. Starting at the lowest frequency available according t
which is somewhat larger than that of the FFT itself. Thithe Nyquist criterion, choose a small enough frequency wir
change in scaling from cubic to quasi-linear makes FDM falow [f,,i.,, fmad fOr the spectral analysis of a given sigre|
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= C(t),n=0,1, 2, ...,N — 1. “Small enough” is the eigenvalues are spurious, for such spurious eigenvalues
operationally defined by the resulting size of the linear alggery sensitive to any change in the parameters of the calcul
braic problem, and could depend on the type of signal andtawn. (Spurious eigenvalues are not those associated with noi
the computational muscle available. They arise from the use of only a locally complete basis, an
2. Set up an evenly spaced (if not otherwise specifiedp not occur often.)
angular frequency grid 27f,;, < ¢; < 2m7f,0, ] = 1, 2,
.» Kuin» DY choosing an appropriate value f&t,;,. A
reasonable choice fdf,,;,, iS Kyin = N(fmax — fmin)/ 2SW,
where SWis the spectral width %/ This is simply half the " .
number of points that would appear in a conventidigloint di?=2 Bic 2 e [24]
complex Fourier transform aof,, within this same frequency =t n=0

window, which is consistent with the informational content of ) ) _

the data arrag,, i.e., this value oK, is the largest number O @ Substantially more accurate expressiénv(hich makes

of lines that can give a unique fit to a signal of this length. Use of the entire measured signal rather than just theNirat
3. Evaluate three complex symmetric matri¢#§’ of the POINts:

size Kin X K, for, e.g.,p = 0, 1, 2, using for the

off-diagonal matrix elements df{? = U®(¢;,¢;/) 1—e™ o

6. Compute the complex amplituddsusing the expression

Kwin M

d*= = gomn 2 B g tiy).  [25]

U'P(e,¢") -
e ¥f(¢) — e () + eM¥g(e) — eMgy(e’) The adjusting parametey is chosen so thalt”(ej, (e +
= e iy)) is numerically stable. One correct choice ¥ =

—Im{ @} for Im{ ,} < 0 andy = 0 for Im{w,} > 0. In the

[19] limit y — o, Eqg. [25] becomes Eq. [24].

where the function§, andg, are the Fourier transforms of the 7. Store the set of converged, andd, and use them as
(roughly) first and last half of the signal, with the time- input for a spectral estimator which, for the absorption mod

domain data points shifted ky, “ersatz” spectrum¥g) corresponds to
M M z dk
fp(‘P) = E ein‘PCner; gp(‘P) — E ei(n*Mfl)taner_ [20] A(F) = — - Im 7271_': . . [26]
n=0 n=M+1

If Im{ w,} > 0, thenw, is replaced withw}. Because the form
of the spectrum is dependent on the denominator of Eq. [2€
it is sometimes economical to refer to each entry in the line li

For the diagonal matrix elements the formula

2M

UPl.e) =X M+ 1M —nper  [1 PO
n=0 8. Choose the next frequency window.
: A few comments are in order. First, note that in FDM the
is used. complex amplitudes are computedthout solving another
4. Solve the generalized eigenvalue problem linear least squares problemin contrast to all other linear
algebraic approaches. Note that the formula for the amplituc
UYB, = uU“B, [22] and phase of each feature as given in Eq. [24] or [25] s

depend on the values of the other complex frequencies.
for the eigenvalues, = exp(-itw,) and eigenvector®, Cconventional LP methods, and in LP-ZOOM, the amplitude

using, for example, a standard implementation of the QA€ constructed by solving a linear system which uses, as p
algorithm (L5). of its input, all the obtained frequencies. In a few casgs

might have a positive imaginary part resulting in a “negative
~ 5. Accept those eigenvalueg which satisfy an error crite- jinewidth. These “bad” roots complicate the correct determi
ron as, e.g., nation of the amplitudes of other features. One regularizatic
procedure is simply to change the sign of the imaginary par
I(U? = uiUO)B| < e [23] We adopt this procedure when constructing the ersatz spectrt

using Eq. [26], replacingy, with w}. Note that in FDM this
for a small enougle. This is simply to make sure that none ofeplacement does not affect the other spectral features. S
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ondly, the maximum number of possible lines, namel for only one which can be implemented with an eye to numeric:
a signal of length\, is used to fit the spectrum. Many of thesefficiency. There are at least two other window functigps
ultimately turn out to be of low amplitude or wide linewidthwith this property. The first obvious choice is the exponentie
and correspond to noise. However, by including them weindow

improve the likelihood that the signal poles will be accurate.

By adjusting the number of points of the entire FID that are g, = exp(=yn), [28]
used and repeating the calculation, it is possible to get a feel for

the stability of the line list. Because FDM is very fast on aN¥orresponding to replacing by ¢ + iy in Eq. [27] and
modern workstation or PC, it is possible to “play around” agynsequently in the expressions for the matrix elementsiof
one might routinely do with the FFT, e.g., using differengq 18] Despite its simplicity, the exponential window is
weighting functions to get the best representation of the datay fown to be a nonoptimal apodization function, as for ¢
is, of course, possible to prune the line list after the fact to We?éjasonably largey, when it can have a noticeablé effect. it
out features of no further interest. starts to discriminate a large part of the Fourier series (exce
sive line broadening in the analogous case of an FID).
The simple cosine window (often referred to in the NMR
Experience with Fourier spectral analysis might suggest tHégrature as a sine-bell windov2{) phase shifted byr/2),
the rectangular-window Fourier basis of Eq. [7] may not be the
most efficient choice. For example, one could argue that the S(w n )
g, = Co )

Other Fourier Bases

abrupt rectangular window might cause truncation artifacts 2M+1 [29]

analogous to those observed in an FFT of an unapodized FID.

While such oscillations.neve'r' act.ually o<.:cur'in the FDM ersalgien leads to good results as its shape yields a good balar
spec'trum, they can be identified in the.smc-llk'e structur(f,- of thtween efficient sampling on one hand and suppression of t
off-diagonal matrix elements &f (see Fig. 1). Itis not obvious Gipps oscillations on the other. The cosine window can b
that such oscillations can ever affect the final results of t'ﬂ%plemented trivially, as inserting Eq. [29] into Eq. [27] leads

generalized eigenvalue problem. In this section we address '@ﬁer dropping the unimportant factor of 1/2) to
guestion.

Just as when one transforms an FID to obtain the FFT
spectrum, in the frame of FDM the truncation artifacts can be
suppressed by implementing a window or apodization function _ ) ) )
g,, which, for convenience, we write as a function of the inde¥/th @ = /(2(M + 1)), which for theU matrices gives
n of the FID. Rewriting Eq. [17] as

Veodo) = V(e —a) + V(e + a) [30]

Ub(p,0') =UP(p + a, ¢' + a)

v + 0“”(@ +a, 0 —a)

V() = X giexplin(e — 70))d, [27] )
n=0 +UP(¢—a, ¢ + a)
we are free to experiment with,. The original formulation of +0P(p - a, ¢' — ). [31]

FDM (1) used a Gaussian-window Fourier basis, which is

reminiscent of the “pseudo-echo” filter that was often appliethat is, the use of a cosine window corresponds to essentia
to early absolute-value 2D spectri9]. Such a window dis- the same numerical procedure and therefore is easily incorp
criminates against the initial portion of the signal, and s@ted in the FDM code as an option. Similarly, virtually any
results in a substantial reduction®N. Likewise, in FDM this trigonometric functiorg,, can be implemented efficiently.
window appeared to be inferior to the rectangular-window To our disappointment, introducing the cosine window ha
basis introduced latei3). This is clearly a result of the very not led to a significant numerical difference, except for a fev
inefficient sampling of the data with the Gaussian windoveases where it perhaps showed a slightly better performan
However, it might be the case that other more efficient withan the rectangular window. A simple explanation of why the
dows could be superior to the simplest choice of the rectangise of the cosine window does not lead to significant improve
lar window. To this end, Chen and Guo have derive@ @n ment of FDM is the following: (i) FDM with a rectangular
alternative expression to compute tblematrix elements in a window is already very efficient and often shows nearly opti
Fourier basis 1) with a general filterg,,. Their expression mal performance3-5); (ii) the use of another window,, in
unfortunately requires about a factor I§f,;, more CPU time Eq. [27] only affects the initial structure of thd matrices,
than that for the special case of the rectangular window of Beaving only a minor effect on the whole subspace formed b
[7]. It turns out, however, that a rectangular window is not thithe K,,;,, window basis functions: Eq. [31] simply means that
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{V.{¢)} is a certain linear combination of¥(¢)}. Linear chemical exchange, and other dynamic processes can all le
combinations of the ¥(¢)} are taken in any event to diago-to a distinctly non-Lorentzian lineshape. FDM will fit such a
nalize theU matrices, so that taking such combinations ugingle line as a superposition of Lorentzians, but it would b
front plays little additional role. We believe that this findingoreferable to have aingle entry in the line list rather than a
should also hold for all other reasonable types of windpw large number of closely clustered lines. This is especiall
important if one wishes to measure small splittings that may
Reference Deconvolution almost unresolved but correspond tal aoupling that is of

The elegant idea of reference deconvolution as put forwdRi€rest- For many situations it is possible to offer a surpris
by Morris (22) is simply to use a reference line, which could b9y Simple solution: reference deconvolution using the pre
TMS, as a lineshape or convolution reference as well as justgPtion laid out by Morris, but implemented using FDM
chemical shift reference. The known theoretical lineshape 'Eﬁelf' . i . . .
TMS can be compared with the observed lineshape to assess!€ Protocol is deceptively simple. FDM is used to fit the
the shimming and/or stability of thB, field. The observed OPServed reference lineshape to a sum of Lorentzians by
response as a function of frequen®yF) can be representedleCt'ng a window centered on the reference line that is narro

by a convolution of the perfect resporBEF) with the instru- enough to exclude the carbon-13 satellites. It is essential
mental respons®(F) have a long enough signal so that truncation effects are mir

mal, and so that the number of local basis functions is den:
enough to result in a good match to the observed lineshar
The set d,, o} for TMS then gives a very close analytic

i ) ) approximation to the function|,,4t). The functionpy,(t)
which according to the convolution theorem means that tlg n be formulated as three closely spaced Lorentzians |

porresponding perfect FIlp(t) has been multiplied by the account for the Si-29 satellites), and the ratio of the twe
instrumental functiorg(t), whereq(t) and Q(F) form a Fou- functions givesq(t). Note that there is no baseline noise

rier transform pair. Clearlyp(t)_ - q(t)/q(t), so that the included inq(t) except, perhaps, as slight errors in the it {
observed data can be corrected if the instrumental fungiin ). The FID is then preprocessed using).

can be obtained. Knowing the ideal lineshape for an isolateéi-l-he efficacy of the reference deconvolution can then b
reference line, like TMS, allowg(t) to be obtained as the ratio .pecked by processing the same TMS spectral window of tt

of the inverse FT of a small spectrgll region cen_tered on tlﬂ%w FID. Ideally, only the three poles for the TMS lines shoulc
pbserved Imeshap_e (an_d not containing other signals) to tttﬂf?n up, along with very small amplitude poles representing th
inverse FT of the ideal lineshape: baseline noise. If significant additional lines are needed, the
further small corrections can be iteratively applied, in a pro
_ Orug(t) [33] cedure which converges providing tl8N is adequate and
Prus(t) there are no other genuine signals within the window. Whe
adequate results are obtained, the rest of the spectrum can
Then simply dividing the full FID byg(t) accomplishes the processed with confidence. Only lines from spins undergoin
desired deconvolution. If the shimming is poor, then,{t) chemical exchange and the like should then require more th:
will decrease more rapidly thapry,t), so thatq(t) will a single entry in the line list to achieve a good fit. It is possibls
eventually be small. Dividing by(t) thus blows up the noise to extend the idea further by using a model for a chemice
in the tail of the FID just like a conventional resolution enexchange lineshape and then deconvolute this as well. Sin
hancement function. When Fourier spectral analysis is us&@M works over disjoint spectral windows, it is possible in
this may require some apodization, so that there is a limit principle to process the NH and aliphatic regions of the proto
reference deconvolution which will depend on tB® ratio. spectrum using different functions for the reference deconv
To the extent that there is honnegligible noise in the baselihgion. Note that reference deconvolution can be applied to ar
around the reference peak, there may also be some unwarggectroscopy in which the observed lineshape can be rep!
small features introduced by reference deconvolution with tisented as a convolution, extending the reach of FDM into mar
noise. Other minor problems such as baseline discontinuityratated areas in which the lineshape may be non-Lorentzian.
the edges of the selected section have been successfullyiadgven possible to convolute the Lorentzians found by FDN
dressed 43). with the experimental lineshape to restore the original shap
Reference deconvolution is a powerful addition to FDMshould this be desired.
The first weakness an experimentalist notices with Eq. [1] is
the assumption of a Lorentzian lineshape. This is important g, 2se correction
the algorithm because without it, the fitting becomes an essen-
tially impossible large nonlinear optimization problem rather Problems with the first few data points of the FID can arist
than a linear algebra problem. However, imperfect shimminfypm the transient response of the audio filters (digital o

O(F) = P(F)*Q(F), (32]

q(t)
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analog) or probe ring-down and lead to baseline roll. SomeAs mentioned earlier, the amplitudes and complex poles
pulse sequences, such as the 1-3-3-1 water suppressiorth&ebroad spectral features are most sensitive to the parame
guence 24), can introduce large linear phase rolls over thef the fit by FDM. This leads to instabilities when such poles
spectrum, and when a pulsed field gradient is applied immere used as entries for the corrections of large time delays.
diately prior to acquisition, some stabilization delays usuallyur numerical tests we found that the applicability of FDM for
need to be included. The usual linear phase correction routitlee phase correction can significantly be extended to long
applied to the FFT spectrum only work adequately when thiene delays when the stabilization idea, originally proposed i
corresponding delay is not too long, so that the phase roll o\eqguite different contex2g), is used in the frame of FDM. The
a typical linewidth is small. idea is very simple and relies on the fact that the errors i
FDM has good tolerance for this type of data imperfectiomletermination of the spectral parameters have a random ch
The usual LP approach is to discard the first few data poirdgster and therefore can be reduced by averaging the FD
and then “backward predict” them from uncorrupted data &rsatz spectrum over the acquisition time or number of point
flatten the baseline2f). This approach will only work well N. In particular, the phase of the unwanted features is sensiti
when the LP backward extrapolation is reasonably good, i.to, the exact length of the signal used in the calculatior
when both the number of extrapolated points and the numbewdfereas the signal poles are more stable. Since FDM is n
lines are not too large. time consuming, one can carry out such an averaging usi
If the data is available only fan = i, i + 1, ... ,N, then many FDM calculations over long but slightly different length
the frequenciesw, extracted from such a signal by FDMdata recorddN,, N,, etc., extracted from the same FID. Al-
should be the same, while the amplituadk$fi) will be mod- though the averaging procedure does not seem to be ve
ulated by the frequency-dependent factors elegant, it turns out to work well when a single FDM result is
unacceptable. As it is quite general, it can also be used in oth
contexts to stabilize the ersatz spectra computed by FDM.
Even when rather large delays are not at issue, FDM me
still be quite useful. Note that the usual “automatic” zeroth
To correct an extracted amplitudig(fi), one can thus simply and first-order phase correction due to small delays and fini
multiply it by the factor expifitw,). Such a correction will be 90° pulse times can be applied extremely rapidly to the list
accurate if the extracted frequencieg and amplitudes, (i) complex amplitudesl, using any simple smooth function of
are reliable, which under certain conditions is often the cageequency. There are other advantages: As long as the expec
Spectral estimator-based methods that attempt to correct piase shift as a function of frequency can be modeled, fi
distorted baseline of the FFT spectrum by, e.g., fitting it to @ample, that which might be produced by a composite 18(
smooth function are clearly inferior to FDM, as they requirpulse in a spin echo, then this nonlinear correction can &
the solution of a nonlinear optimization problem, while the usgpplied to thed, as well, even though it may not be a simple
of Eq. [34] is straightforward. function of frequency.
However, one should realize that the correction factor
exp@ﬁ_rwk), v_vhich is now a po_sitive exponential, can be veryatched Resolution Enhancement or “Cheating”
large if the width of thekth pole is large. For a large time delay
fiT even a very small error in determination of the amplitude FDM can achieve an extremely good fit to most kinds o
d.(f) could be amplified enormously if the width, is large. spectra that arise from NMR experiments in liquids. There is
The errors of the calculated spectral parametggsandd, (i), difference, however, between having a good fit and having tf
are not the only source of instability, because the line listue spectral parameters. Obviously, if there are thousands
obtained by FDM does not only represent the desired signatserlapping Lorentzians within a small spectral window, thel
In fact, it always contains poles which represent the noise. Rbe lengthN of the FID may not be long enough to achieve ar
example, white uncorrelated noise results in poles with veexact fit, as the number of poles in the window is limited tc
large y,. However, such poles can be easily identified ard,;,. In this case the spectrum is intrinsically unresolved. Th
removed from further analysis. Therefore, their presence wifesence of noise poles is another issue. Nevertheless, in sc
not affect the phase correction procedure. The problem withses the FDM line list is close to a perfect physical summal
occur when such an obvious separation of the signal and naigehe NMR transitions. By manipulating the spectral param
poles is not possible. To this end Eq. [34] has certain limitaters directly, it is possible to present the spectral informatic
tions. That is, FDM will be a perfect method for correctingn more informative ways.
artifacts due to possibly very large time delays, but only for For example, digital filtering for resolution enhancement i
spectra with lines that are not too strongly overlapping and nmdmmonly applied in FT spectroscopy. One method is t
buried in too much noise. We have found, however, that FDMultiply the FID by a positive exponential which matches
is surprisingly robust on even complex spectra with consideseme linewidth, and then apodize the end of the data to ke
able time delays as long as the spectrum is not too noisy. the amplification of the noise from being too seve?@(When

(7)) = diexpCifitwy). [34]
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taking the closest integer vallessthan the true value. The
test FID ¢, before integerization is thus

x 50
49
c,= 81.92* > exp(2mi(0.9)™
m=0
h #L X (2500.0— 2.5i)(2.0 X 107“n))
0

+ 2exp(2mi(0.9)™(2487.5— 2.5i)(2.0 X 107*n))

““““HH e ., + exp(27i(0.9)™(2475.0— 2.51)(2.0 X 10‘4n))
1000 2000 Hz [35]

FIG.2. The spectrum of triplets, “Jacob’s ladder.” A total of 50 triplets are

present, beginning with a 5.0 Hz linewidth with 12.5 Hz coupling centered gin( is heavily peaked at= 0, diminishing rapidly as the lines
2487.5 Hz and finishing with a 28.8 mHz line width and 71.6 mHz coupling
A spectral width of 5 kHz is used, of which half is shown. The wide range (?Jet out of phase and the broader features decay’ so that

linewidths and splittings and the accumulation of lines near zero frequen!@?rrow lines are d|g|t|-zed. with only 6_.8 bits. Ilntege_rlzanon
makes this signal challenging for linear algebraic methods. introduces colored noise into the baseline and is an importa

element of the test. The difference in line width between th
broadest and narrowest feature is almost 175-fold, as is tl

there are lines of differing width, some narrow features can Béference in peak height. The integral of each multiplet shoul
“overenhanced,” giving undulations in the baseline arour® the same, however. Figure 2 shows the spectrum of the t
these signals. This is because the digital filter correspondsstgnal.
subtractinga fixed width from each line. However, in FDM we Figure 3 compares the FFT to FDM on the densest portia
can take a different approach and reduce the linewidth of eg@fthe frequency range of the test signal, using 32K and 64
pole by a certain fraction of its original width. We call thisFIDs. The result of using the FFT, with appropriate apodizatio
procedure “cheating,” because it can be quite dangerous, and
because it will appeal to everyone.

Although cheating is certainly pushing the integrity of the
line list to its limit, it can reveal buried couplings that were
invisible in the FDM ersatz spectrum, or in the FT spectrum. rpm ersatz
Reference deconvolution, which tends to minimize the number =64 J L L
of entries for each line, is certainly a good idea to use before
cheating. Used cautiously, cheating can help reveal more of the 1000 | 1000

1.001 1.014 0.999 0.999
information in the signal, as we show in the next section.
FDM Ersatz |
e L O
EXPERIMENTAL
A Numerical Example FFT [\ A A JAL ini “AL
N = 64K J ]
To show the ability of FDM to identify and resolve purely
Lorentzian lines of widely differing widths and spacings in = __.
a very long FID, we constructed a “Jacob’s ladder” of 50 nN=32« ]\\ ]\ j\ /\ /\ /L
triplets, each of which has a splitting between the nearest ‘ .
neighbors of 2.5 times the full width at half height. The 120 17.0 22,0 Hz

signal is constructed by assuming a spectral width of 5 kHz
and beginning with a trlplet with the right-hand line at FIG. 3. A comparison of FFT and FDM on the densest part of the signa

. . . . hown in Fig. 2. The relative integrals calculated by FDM are shown for th
Nyquist frequency of 2500 Hz and with a linewidth of 5'@2K FID. Note that a 32K point acquisition (6.553 s) is unable to resolve an

Hz and spacing of 12.5 Hz. This 1:2:1 triplet is then reprqs the fine multiplet structure if an FFT is used, even with zero-filling to 128K,
duced by multiplying both the frequency and linewidth byecause of the approximate resolution limit of 0.15 Hz according to th
0.9 a total of 49 times, keeping the amplitude and phag@certainty principle. By contrast, FDM resolves all the multiplets with a 32K

fixed, with an overall phase of zero. The damped Sinusoiap The line frequencies extracted by FDM are highly accurate, and th
relative integrals are within a few percent of the correct value for eacl

for these 50 trlplets are coadded, n_orr_nallzed to an Inltl% Itiplet. Some of the individual line intensity/width ratios are not as accurate
valuec, = 16,384,sampled uniformly in time every 208S, nhowever, because the shorter FID does not have quite enough informati
and then integerized to mimic, approximately, an ADC bgbntent to pin down these parameters.
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TMS NAc
/\/\
N
Shimmed
Q N
N
FIG. 5. The structure of a diindole reaction product,H-pyrido[1,2-a:

Unshimmed
3,4-b]diinole, used to test the reference deconvolution procedure. It wa

-4:0 O‘.O +4l‘0 Hz dissolved in CDCJ with added TMS.

' FIG. 4. ATMS _reference line shimmed so that the Si-29 satellit.es a@nhancement (cheating) by artificially multiplying the linewidth
visible (top) and shimmed very poorly (bottom). FDM was used to fit botly; 5 yolag by a factor of 0.5. Some of the noise poles becom
signals to a sum of Lorentzian lines and thereby construct the reference . . . .
deconvolution function discussed in the text. more prominent as notches in the baseline, but in other respe

the results are quite encouraging.

There is, of course, a limit to reference deconvolution b
to minimize, but not completely eliminate, the “sinc wigglesFDM. When signals that were broadened about twice as mu
that are found on the narrowest lines, and with zero-filling @s those shown were processed, the deconvolution functi
128K, shows that a 32K FID is unable to resolve any of thtself becomes unstable. The net result is that only the initié
narrowest features, but that doubling the length of the FID fortion of the FID can be processed, and the number of pol
64K resolves more of the multiplets. FDM does substantiallg the frequency domain is not dense enough to achieve a go
better, although the peak heights of some of the narrow fdi; or to uncover small splittings. Fortunately, it is fairly easy
tures are not correctly captured. The relatiwtegrals of the to tell visually whether the results are any good.
multiplets, shown in the figure, are quite good, as are the

frequency coordinates of the individual lines, but there is some Shimmed
error in the exact determination of the width/height individu- __J\./\J'\J\—/\UML_
ally. These errors arise from the incomplete information in the

shorter FID, and disappear as the length of the signal is Unshimmed
increased. The broader lines are correctly reproduced by both

methods. The longest signal is processed, in its entirety, in apegconvoluted
matter of tens of seconds with FDM on a low-end workstation.

Reference Deconvolution by FDM
_ o ) Deconvoluted

Figure 4 shows a close-up of the TMS line in a solution of Cheat=0.5
~10 mg of the compound shown in Fig. 5 dissolved in CRCI
acquired on a 500 MHz Varian UnityPlus spectrometer with
different instrumental linewidths by adjusting the shimming. In
the second trace the line has been deliberately made asymmet-_
ric, broad, and very non-Lorentzian using tfeandz* shims.

Rather than use a theoretical model for the TMS line, weFIG. 6. Anexpanded view of a small portion of the 1D NMR spectrum of

simply used the EDM fit of the shimmed spectrum as an esl(q_e molecgle shown in Fig. 5._ Thg first two t_races correspond to sam
ogeneity as the two traces in Fig. 4. The third trace shows the result

. . . ho
pe”mental standard. Thus, deconVOIUtmg the poorly Shlmm‘r:edenrence deconvolution of the second trace with the deconvolution functic

spectrum should yield results comparable to the propedyained by analyzing the TMS signals in Fig. 4 by FDM. It agrees extremel
shimmed spectrum, which is easily checked. The first two tracesll with the first trace, as it should. The last trace shows the effect o

in Fig. 6 show a representative multiplet with the good and po@heating” and artificially making the linewidth of each feature in the decon:

shimming, respectively. The effect of reference deconvolution giuted spectrum only half as wide. Some small couplings are revealed. Tl
the second spectrum is shown in the third trace. givina res EID had 32,768 complex points; the entire calculation including the referenc

. P ) . » gving LJl&résconvolution took about 15 s on a small SGI workstation (200 MHZ |1P2:
nearly indistinguishable from the correctly shimmed spectrum gbcessor. FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0. CP

top. Finally, the last trace shows the effect of matched resolutiomPs R4400 Processor Chip Revision: 6.0, 64 Mb RAM.)

125 HZz —




86 HU ET AL.

spectral estimation of NMR signals. FDM is numerically
stable, lightning fast, and applicable to many different kind:
of spectra. Some of the common instrumental shortcoming
such as poor shimming or nonzero dead times, can I
conveniently overcome using FDM. In particular, reference
deconvolution by FDM is a very useful technique. Like mos
parameter estimation methods, FDM is sensitive to nois
and certainly cannot improve the intrinsic sensitivity of the
FDM Ersatz, 25 ms delay, N = 7K~8K. NMR experiment by somehow digging signals out of noise
To the extent the signal matches the FDM ansatz, howeve
big improvements can be obtained, with the best case beil
sharp, well-resolved, purely Lorentzian lines. If the signal i
nonstationary (e.gt;-noise along an indirect dimension of
a multidimensional NMR experiment) or very noisy, or if
the lines are very far from Lorentzian, a spectrum can b
obtained, but the spectral parameters do not have the desi
significance. However, because FDM can be implemente
so efficiently, it could be used to control the experimen
on-line, terminating acquisition under computer contro
once a stable line list is obtained. Time averaging is, O

R o A A L M T course, the only reliable method for improvirgN on a

26 24 22 20 ppm given instrument and sample. This is clearly an avenu
FIG. 7. An expanded view of the NMR spectrum of progesterone in th\@’orth exploring in the future. We note in passing that almos

vicinity of the Me-19 resonanc&op: Conventional NMR spectrum, properly any computer is suitable for FDM. However, because th
phasedMiddle: Phase-corrected FDM ersatz spectrum obtained after deletiaggorithm parallelizes trivially, parallel computers may be

the first 100 data points. Twenty-five FDM ersatz spectra were computed, Wiiked for direct parameter estimation on huge multidimer

signal lengths between 7K and 8K data points (an increment of 40 data poirg%nal signals in less time than it takes to acquire the dat
and then summed. The calculation required about a minute of computer tiW 9 q |

(see the caption to Fig. 6Rottom:FFT spectrum obtained by substituting theVVe Will desgrlbg these exciting developments in a series ¢
first 100 data points with zeroes, which is equivalent to applying an accurd@lated publications.

linear phase correction to the spectrum. The phase roll is sufficiently violent

that it would be next to impossible to pick out baseline points appropriately. ACKNOWLEDGMENTS
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